Search results for "Orders of magnitude"
showing 10 items of 188 documents
Circumstantial Evidence for Rotating Mass Matrix from Fermion Mass and Mixing Data
2002
It is shown that existing data on the mixing between up and down fermion states and on the hierarchical mass ratios between fermion generations, as far as can be so analysed at present, are all consistent with the two phenomena being both consequences of a mass matrix rotating in generation space with changing energy scale. As a result, the rotating mass matrix can be traced over some 14 orders of magnitude in energy from the mass scale of the $t$-quark at 175 GeV to below that of the atmospheric neutrino at 0.05 eV.
Constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrop…
2019
We derive stringent constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrophysical neutrino source: TXS $0506+056$. Observation of neutrino (IceCube-170922A) and photons in a similar time frame and from the same direction is used to derive these limits. We describe ways in which these constraints can be further improved by orders of magnitude.
Observation of Very Narrow Linewidths in the Fluorescence Excitation Spectra of Single Conjugated Polymer Chains at 1.2 K
2007
Fluorescence emission and excitation spectra of single poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] polymer molecules embedded in poly(methylmethacrylate) have been recorded at 1.2 K. The ubiquitous spectral diffusion causes large variations in the spectral shape and apparent linewidth in the emission spectra. Nevertheless, we find very narrow (approximately 0.1 cm(-1)) purely electronic zero-phonon lines in the excitation spectra, which are 2 orders of magnitude smaller than previous estimates of the homogeneous linewidth. These results complement the molecular description of the low energy transitions in conjugated polymers.
Triple resonant four-wave mixing: A microwatt continuous-wave laser source in the vacuum ultraviolet region at 120 nm
2012
We present a vacuum ultraviolet laser source by four-wave mixing in mercury vapour based on solid-state laser systems. Maximum powers of 6μW were achieved with an increase of four orders of magnitude in efficiency.
Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells?
2004
The most commonly measured marker of oxidative DNA damage is 8-oxo-7,8-dihydroguanine (8-oxoGua) or its deoxyribonucleoside (8-oxodGuo). Published estimates of the concentration of 8-oxoGua/8-oxodGuo in DNA of normal human cells vary over a range of three orders of magnitude. Analysis by chromatographic methods (GC-MS, HPLC with electrochemical detection (ECD) or HPLC-MS/MS) is beset by the problem of adventitious oxidation of guanine during sample preparation. An alternative approach, based on the use of the DNA repair enzyme formamidopyrimidine DNA N-glycosylase (FPG) to make breaks in the DNA at sites of the oxidised base, gives much lower values. ESCODD, the European Standards Committee…
Electromagnetic Processes and Interactions
2011
The electron, the muon, and their neutrinos are important tools in testing the structure of the fundamental electromagnetic and weak interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Although electroweak interactions should in fact be discussed as a whole and on the same footing, purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much high…
Constraining the surface properties of effective Skyrme interactions
2016
The purpose of this study is threefold: first, to identify a scheme for the determination of the surface energy coefficient a_surf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for a_surf and the characteristic energies of the fission barrier of Pu240; and third, to lay out a procedure how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. There are several frequently used possibilities to define and calculate the surface energy coefficient a_surf of effective interactions. The most direct access is provided by the model system of se…
Stabilization of primary mobile radiation defects in MgF2 crystals
2016
Abstract Non-radiative decay of the electronic excitations (excitons) into point defects ( F – H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in…
Fracture Processes Observed with A Cryogenic Detector
2006
In the early stages of running of the CRESST dark matter search using sapphire detectors at very low temperature, an unexpectedly high rate of signal pulses appeared. Their origin was finally traced to fracture events in the sapphire due to the very tight clamping of the detectors. During extensive runs the energy and time of each event was recorded, providing large data sets for such phenomena. We believe this is the first time the energy release in fracture has been directly and accurately measured on a microscopic event-by-event basis. The energy threshold corresponds to the breaking of only a few hundred covalent bonds, a sensitivity some orders of magnitude greater than that of previou…
Direct limits on the interaction of antiprotons with axion-like dark matter
2019
Astrophysical observations indicate that there is roughly five times more dark matter in the Universe than ordinary baryonic matter, with an even larger amount of the Universe's energy content due to dark energy. So far, the microscopic properties of these dark components have remained shrouded in mystery. In addition, even the five percent of ordinary matter in our Universe has yet to be understood, since the Standard Model of particle physics lacks any consistent explanation for the predominance of matter over antimatter. Inspired by these central problems of modern physics, we present here a direct search for interactions of antimatter with dark matter, and place direct constraints on th…